450 research outputs found

    Thermal Conductivity of the Quasi One-Dimensional Spin System Sr_2_V_3_O_9_

    Full text link
    We have measured the thermal conductivity along the [101] direction, kappa_[101]_, along the [10-1] direction, kappa_[10-1]_, and along the b-axis, kappa_b_, of the quasi one-dimensional S=1/2 spin system Sr_2_V_3_O_9_ in magnetic fields up to 14 T, in order to find the thermal conductivity due to spinons and to clarify whether the spin-chains run along the [101] or [10-1] direction. It has been found that both kappa_[101]_, kappa_[10-1]_ and kappa_b_ show one peak around 10 K in zero field and that the magnitude of kappa_[10-1]_ is larger than those of kappa_[101]_ and kappa_b_. By the application of magnetic field along the heat current, the peak of kappa_[10-1]_ is markedly suppressed, while the peaks of kappa_[101]_ and kappa_b_ little change. These results indicate that there is a large contribution of spinons to kappa_[10-1]_ and suggest that the spin-chains run along the [10-1] direction.Comment: 3 pages, 4 figure

    Measurement of the tensor analyzing power T20 in the dd->^3Hen and dd->^3Hp at intermediate energies and at zero degree

    Get PDF
    The data on the tensor analyzing power T20 in the dd->^3Hen and dd-> ^3Hp reactions at 140, 200 and 270 MeV of the deuteron kinetic energy and at zero degree obtained at RIKEN Accelerator Research Facility are presented. The observed positive sign of T20 clearly demonstrates the sensitivity to the D/S wave ratios in the ^3He and ^3H in the energy domain of the measurements. The T20 data for the ^3He-n and ^3H-p channels are in agreement within experimental accuracy.Comment: 9 pages, 3 figures, submitted in Phys.Lett.

    Measurement of Single and Double Spin-Flip Probabilities in Inelastic Deuteron Scattering on 12C at 270 MeV

    Get PDF
    The deuteron single and double spin-flip probabilities, S1 and S2, have been measured for the 12C(pol{d},pol{d}') reaction at Ed = 270 MeV for an excitation energy range between 4 and 24 MeV and a scattering angular range between Theta_lab = 2.5 and 7.5 deg. The extracted S1 exhibits characteristic values depending on the structure of the excited state. The S2 is close to zero over the measured excitation energy range. The SFP angular distribution data for the 2+ (4.44 MeV) and 1+ (12.71 MeV) states are well described by the microscopic DWIA calculations

    Existence of Dynamical Scaling in the Temporal Signal of Time Projection Chamber

    Full text link
    The temporal signals from a large gas detector may show dynamical scaling due to many correlated space points created by the charged particles while passing through the tracking medium. This has been demonstrated through simulation using realistic parameters of a Time Projection Chamber (TPC) being fabricated to be used in ALICE collider experiment at CERN. An interesting aspect of this dynamical behavior is the existence of an universal scaling which does not depend on the multiplicity of the collision. This aspect can be utilised further to study physics at the device level and also for the online monitoring of certain physical observables including electronics noise which are a few crucial parameters for the optimal TPC performance.Comment: 5 pages, 6 figure

    Precision measurement of vector and tensor analyzing powers in elastic deuteron-proton scattering

    Get PDF
    High precision vector and tensor analyzing powers of elastic deuteron-proton d+p scattering have been measured at intermediate energies to investigate effects of three-nucleon forces (3NF). Angular distribution in the range of 70-120 degree in the center-of mass frame for incident-deuteron energies of 130 and 180 MeV were obtained using the RIKEN facility. The beam polarization was unambiguously determined by measuring the 12C(d,alpha)10B(2+) reaction at 0 degree. Results of the measurements are compared with state-of-the-art three-nucleon calculations. The present modeling of nucleon-nucleon forces and its extension to the three-nucleon system is not sufficient to describe the high precision data consistently and requires, therefore, further investigation

    Shallow and diffuse spin-orbit potential for proton elastic scattering from neutron-rich helium isotopes at 71 MeV/nucleon

    Full text link
    Vector analyzing powers for proton elastic scattering from 8He at 71 MeV/nucleon have been measured using a solid polarized proton target operated in a low magnetic field of 0.1 T. The spin-orbit potential obtained from a phenomenological optical model analysis is found to be significantly shallower and more diffuse than the global systematics of stable nuclei, which is an indication that the spin-orbit potential is modified for scattering involving neutron-rich nuclei. A close similarity between the matter radius and the root-mean-square radius of the spin-orbit potential is also identified.Comment: 6 pages, 4 figures, accepted for publication in Physical Review C Rapid Communicatio

    Analyzing powers Ayy, Axx, Axz and Ay in the dd->3Hen reaction at 270 MeV

    Full text link
    The data on the tensor Ayy, Axx, Axz and vector Ay analyzing powers in the dd->3Hen obtained at Td= 270 MeV in the angular range 0 - 110 degrees in the c.m. are presented. The observed negative sign of the tensor analyzing powers Ayy, Axx and Axz at small angles clearly demonstrate the sensitivity to the ratio of the D and S wave component of the 3He wave function. However, the one-nucleon exchange calculations by using the standard 3He wave functions have failed to reproduce the strong variation of the tensor analyzing powers as a function of the angle in the c.m.Comment: 8 pages, 7 figures, 4 tables. Submitted to EPJ

    Polarization Transfer Measurement for 1H(d,p)2H^1H(\vec{d},\vec{p})^2 H Elastic Scattering at 135 MeV/u and Three Nucleon Force Effects

    Get PDF
    The deuteron to proton polarization transfer coefficients for the dd--pp elastic scattering were precisely measured with an incoming deuteron energy of 135 MeV/u at the RIKEN Accelerator Research Facility. The data are compared to theoretical predictions based on exact solutions of three-nucleon Faddeev equations with high--precision nucleon--nucleon forces combined with different three-nucleon forces (3NFs), representing the current, most popular models: the 2π2\pi-exchange Tucson-Melbourne model, a modification thereof closer to chiral symmetry TM'(99), and the Urbana IX 3NF. Theory predicts large 3NF effects, especially in the angular range around the cross section minimum, but the present data only partially concurs, predominantly for KxxyKyyyK_{xx}^{y'}-K_{yy}^{y'} (KxxyK_{xx}^{y'}, KyyyK_{yy}^{y'}). For the induced polarization, PyP^{y'}, the TM'(99) and Urbana IX 3NFs reproduce the data, but the Tucson-Melbourne 3NF fails to describe the data. For the polarization transfer coefficients, KyyK_{y}^{y'} and KxzyK_{xz}^{y'}, the predicted 3NF ffects are in drastic conflict to the data. These facts clearly reveal the defects of the 3NF models currently used.Comment: 32 pages, 12 figures, Submitted to Physical Review

    Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity.

    Get PDF
    Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour
    corecore